Scientifica PatchStar Motorised Micromanipulator Technical Data
Scientifica PatchStar Micromanipulator

Scientifica PatchStar Micromanipulator

Schematics

PatchStar Micromanipulator schematic with measurements

PatchStar Micromanipulator schematic side profile

PatchStar Micromanipulator schematic birdseye view

标准系统

We can customise this system to suit your unique experimental needs. Please contact us to discuss your requirements.

1 x Sliding Carriage
1 x Remote control option

PatchPad or Control Cube

1 x 1U Control Unit

For one or two PatchStars

调查报告

  • Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons.

    Alfonsa, H., Lakey, J., Lightowlers, R., & Trevelyan, A. (2016). Cl-out is a novel cooperative optogenetic tool for extruding chloride from neurons. Nature Communications, 7, 13495. http://dx.doi.org/10.1038/ncom...

  • The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity.

    Alfonsa, H., Merricks, E M., Codadu, N K., Cunningham, M., Deisseroth, K., Racca, C., & Trevelyan, A J., (2015). The Contribution of Raised Intraneuronal Chloride to Epileptic Network Activity. The Journal of Neuroscience, 35(20), 7715-7726. http://www.jneurosci.org/content/35/20/7715

  • Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping.

    Antonovaite, N., Beekmans, S V., Hol, E M., Wadman, W J., & Iannuzzi, D. (2018). Structure-stiffness relation of live mouse brain tissue determined by depth-controlled indentation mapping. Biological Physics. https://arxiv.org/pdf/1802.022...

  • Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping.

    Antonovaite, N., Beekmans, S V., Hol, E M., Wadman, W J., & Iannuzzi, D. (2018). Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Scientific Reports. 12517(8). https://www.nature.com/articles/s41598-018-31035-y

  • A microfluidics approach to study the accumulation of molecules at basal lamina interfaces.

    Arends, F., Sellner, S., Seifert, P., Gerland, U., Rehberg, M., & Lieleg, O. (2015). A microfluidics approach to study the accumulation of molecules at basal lamina interfaces. Lab Chip, 15(16), 3326-3334. http://dx.doi.org/10.1039/c5lc...

  • Locomotion modulates specific functional cell types in the mouse visual thalamus.

    Aydin, C., Couto, J., Giugliano, M., Farrow, K., & Bonin, V. (2018). Locomotion modulates specific functional cell types in the mouse visual thalamus. Nature Communications, 9(4882). https://www.nature.com/article...

  • Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs.

    Bitzenhofer, S., Sieben, K., Siebert, K., Spehr, M., & Hanganu-Opatz, I. (2015). Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs. Cell Reports, 11(3), 486-497. http://dx.doi.org/10.1016/j.ce...

  • Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits.

    Brickley, S., Ye, Z., Yu, X., Houston, C., Aboukhalil, Z., Franks, N., & Wisden, W. (2017). Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits. Frontiers In Cellular Neuroscience, 11. http://dx.doi.org/10.3389/fnce...

  • Brickley, S., Ye, Z., Yu, X., Houston, C., Aboukhalil, Z., Franks, N., & Wisden, W. (2017). Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits. Frontiers In Cellular Neuroscience, 11. http://dx.doi.org/10.3389/fnce...

    Chen, X., Bonfiglio, R., Banerji, S., Jackson, D., Salustri, A., & Richter, R. (2016). Micromechanical Analysis of the Hyaluronan-Rich Matrix Surrounding the Oocyte Reveals a Uniquely Soft and Elastic Composition. Biophysical Journal, 110(12), 2779-2789. http://dx.doi.org/10.1016/j.bp...

  • Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.

    de Britto, A., & Moraes, D. (2017). Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats. The Journal Of Physiology, 595(6), 2043-2064. http://dx.doi.org/10.1113/jp27...

  • Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats.

    de Britto, A., & Moraes, D. (2017). Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats. The Journal Of Physiology, 595(6), 2043-2064. http://dx.doi.org/10.1113/jp27...

  • Reducing Extracellular Ca2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus.

    Diez, R., Richardson, M J E., & Wall, MJ. (2017). Reducing Extracellular Ca2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus. Frontiers in Neural Circuits. https://www.frontiersin.org/ar...

  • A preliminary study on the method for stable and reliable implantation of neural interfaces into peripheral nervous system.

    Donghyun Hwang, Yong Seok Ihn, Seonhong Hwang, Sang-Rok Oh, & Keehoon Kim. (2016). A preliminary study on the method for stable and reliable implantation of neural interfaces into peripheral nervous system. 2016 6Th IEEE International Conference On Biomedical Robotics And Biomechatronics (Biorob). http://dx.doi.org/10.1109/bior...

  • Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes.

    Du, Y., Ma, B., Kiyoshi, C., Alford, C., Wang, W., & Zhou, M. (2015). Freshly dissociated mature hippocampal astrocytes exhibit passive membrane conductance and low membrane resistance similarly to syncytial coupled astrocytes. Journal Of Neurophysiology, 113(10), 3744-3750. http://dx.doi.org/10.1152/jn.0...

  • Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits.

    Edwards, I., Lall, V., Paton, J., Yanagawa, Y., Szabo, G., Deuchars, S., & Deuchars, J. (2014). Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits. Brain Structure And Function, 220(3), 1421-1436. http://dx.doi.org/10.1007/s004...

  • Early-life exposure to caffeine affects the construction and activity of cortical networks in mice.

    Fazeli, W., Zappettini, S., Marguet, S., Grendel, J., Esclapez, M., Bernard, C., Isbrandt, D. (2017). Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Experimental Neurology, 295, 88-103. https://doi.org/10.1016/j.expneurol.2017.05.013

  • Two-Photon Targeted, Quad Whole-Cell Patch-Clamping Robot

    G. I. Vera Gonzalez, P. O. Kgwarae and S. R. Schultz. (2023) "Two-Photon Targeted, Quad Whole-Cell Patch-Clamping Robot," 2023 11th International IEEE/EMBS Conference on Neural Engineering (NER), Baltimore, MD, USA, pp. 1-5.

  • Neocortical Rebound Depolarization Enhances Visual Perception.

    Funayama, K., Minamisawa, G., Matsumoto, N., Ban, H., Chan, A., & Matsuki, N. et al. (2015). Neocortical Rebound Depolarization Enhances Visual Perception. PLOS Biology, 13(8), e1002231. http://dx.doi.org/10.1371/jour...

  • Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain.

    Ghatak, S., Banerjee, A., & Sikdar, S. (2015). Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. The Journal Of Physiology, 594(1), 59-81. http://dx.doi.org/10.1113/jp27...

  • Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells.

    Hurk, M., Erwin, J., Yeo, G., Gage, F., Bardy, C. (2018). Patch-Seq Protocol to Analyze the Electrophysiology, Morphology and Transcriptome of Whole Single Neurons Derived From Human Pluripotent Stem Cells. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2018.00261

  • Developmentally regulated impairment of parvalbumin interneuron synaptic transmission in an experimental model of Dravet syndrome.

    Kaneko, K., Currin, C. B., Goff, K. M., Wengert, E. R., Somarowthu, A., Vogels, T. P. & Goldberg, E. M. (2022). Developmentally regulated impairment of parvalbumin interneuron synaptic transmission in an experimental model of Dravet syndrome. Cell Press, 38(13). https://doi.org/10.1016/j.celrep.2022.110580

  • Blue light responses in Cancer borealis stomatogastric ganglion neurons

    Kedia, S. & Marder, E. (2022). Blue light responses in Cancer borealis stomatogastric ganglion neurons. Current Biology, 32(6), 1439-1445. https://doi.org/10.1016/j.cub.2022.01.064

  • Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but Not Rhythmogenesis in Rodent Brainstem Circuits.

    Koizumi, H., John, T T., Chia, J X., Tariq, M F., Phillips, R S., Mosher, B., Chen, Y., Thompson, R., Zhang, R., Koshiya, N., & Smith, J C. (2018). Transient Receptor Potential Channels TRPM4 and TRPC3 Critically Contribute to Respiratory Motor Pattern Formation but Not Rhythmogenesis in Rodent Brainstem Circuits. eNeuro. http://www.eneuro.org/content/...

  • Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition.

    Lee, S., Geiller, T., Jung, A., Nakajima, R., Song, Y., Baker, B. (2017) Improving a genetically encoded voltage indicator by modifying the cytoplasmic charge composition. Nature, (7), 8286. https://www.nature.com/article...

  • A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation.

    Letellier, M., Szíber, Z., Chamma, I., Saphy, C., Papasideri, I., Tessier, B., Sainlos, M., Czöndör, K., Thoumine, O. (2018). A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation. Nature, 9, 3979. https://www.nature.com/article...

  • The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain.

    Li, J M., & Sheets, P L. (2018). The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. The Journal of Physiology, 596(24), 6289 - 6305. https://physoc.onlinelibrary.w...

  • Real-time Electrophysiology: Using Closed-loop Protocols to Probe Neuronal Dynamics and Beyond.

    Linaro, D., Couto, J., & Giugliano, M. (2015). Real-time Electrophysiology: Using Closed-loop Protocols to Probe Neuronal Dynamics and Beyond. Journal Of Visualized Experiments, (100). http://dx.doi.org/10.3791/5232...

  • Dual patch voltage clamp study of low membrane resistance astrocytes in situ.

    Ma, B., Xu, G., Wang, W., Enyeart, J., & Zhou, M. (2014). Dual patch voltage clamp study of low membrane resistance astrocytes in situ. Molecular Brain, 7(1), 18. http://dx.doi.org/10.1186/1756...

  • An Automated Method for Characterization of Evoked Single-Trial Local Field Potentials Recorded from Rat Barrel Cortex Under Mechanical Whisker Stimulation.

    Mahmud, M., Cecchetto, C., & Vassanelli, S. (2016). An Automated Method for Characterization of Evoked Single-Trial Local Field Potentials Recorded from Rat Barrel Cortex Under Mechanical Whisker Stimulation. Cognitive Computation, 8(5), 935-945. http://dx.doi.org/10.1007/s125...

  • Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes.

    Maksaev, G., & Haswell, E. (2015). Expressing and Characterizing Mechanosensitive Channels in Xenopus Oocytes. Methods In Molecular Biology, 151-169. http://dx.doi.org/10.1007/978-...

  • Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat.

    Malik, R., & Ferguson, A. (2016). Hydrogen sulfide depolarizes neurons in the nucleus of the solitary tract of the rat. Brain Research, 1633, 1-9. http://dx.doi.org/10.1016/j.br.

  • Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo.

    Nekolla, K., Kick, K., Sellner, S., Mildner, K., Zahler, S., & Zeuschner, D. et al. (2016). Influence of Surface Modifications on the Spatiotemporal Microdistribution of Quantum Dots In Vivo. Small, 12(19), 2641-2651. http://dx.doi.org/10.1002/smll...

  • Validating silicon polytrodes with paired juxtacellular recordings: method and dataset.

    Neto, J., Lopes, G., Frazão, J., Nogueira, J., Lacerda, P., & Baião, P. et al. (2016). Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. Journal Of Neurophysiology, 116(2), 892-903. http://dx.doi.org/10.1152/jn.0...

  • Real-time determination of sarcomere length of a single cardiomyocyte during contraction.

    Peterson, P., Kalda, M., & Vendelin, M. (2012). Real-time determination of sarcomere length of a single cardiomyocyte during contraction. American Journal Of Physiology - Cell Physiology, 304(6), C519-C531. http://dx.doi.org/10.1152/ajpc...

  • Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain Injury In Vivo.

    Ping, X., & Jin, X. (2016). Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain Injury In Vivo. Journal Of Neurotrauma, 33(4), 354-361. http://dx.doi.org/10.1089/neu....

  • Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease.

    Randall, A., Manso, Y., Holland, P., Kitamura, A., Szymkowiak, S., Duncombe, J., Hennessy, E., Searcy, J., Marangoni, M. (2018). Minocycline reduces microgliosis and improves subcortical white matter function in a model of cerebral vascular disease. Glia, 66(1), 34-36. https://onlinelibrary.wiley.co...

  • Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior?

    Roberts, A., Conte, D., Hull, M., Merrison-Hort, R., al Azad, A., & Buhl, E. et al. (2014). Can Simple Rules Control Development of a Pioneer Vertebrate Neuronal Network Generating Behavior?. Journal Of Neuroscience, 34(2), 608-621. http://dx.doi.org/10.1523/jneu...

  • DNA nanotubes as intracellular delivery vehicles in vivo.

    Sellner, S., Kocabey, S., Nekolla, K., Krombach, F., Liedl, T., & Rehberg, M. (2015). DNA nanotubes as intracellular delivery vehicles in vivo. Biomaterials, 53, 453-463. http://dx.doi.org/10.1016/j.bi...

  • Angular Approach Scanning Ion Conductance Microscopy.

    Shevchuk, A., Tokar, S., Gopal, S., Sanchez-Alonso, J., Tarasov, A., & Vélez-Ortega, A. et al. (2016). Angular Approach Scanning Ion Conductance Microscopy. Biophysical Journal, 110(10), 2252-2265. http://dx.doi.org/10.1016/j.bp...

  • Cleavage-stage embryo rotation tracking and automated micropipette control: Towards automated single cell manipulation.

    Wong, C., & Mills, J. (2016). Cleavage-stage embryo rotation tracking and automated micropipette control: Towards automated single cell manipulation. 2016 IEEE/RSJ International Conference On Intelligent Robots And Systems (IROS). http://dx.doi.org/10.1109/iros...

  • The contribution of δ subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex.

    Ye, Z., McGee, T., Houston, C., & Brickley, S. (2013). The contribution of δ subunit-containing GABAA receptors to phasic and tonic conductance changes in cerebellum, thalamus and neocortex. Frontiers In Neural Circuits, 7. http://dx.doi.org/10.3389/fnci...

  • Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity.

    Zheng, L., Yu, M., Lin, R. et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat Commun 11, 3012 (2020). https://doi.org/10.1038/s41467-020-16826-0

Contact Form

Contact us

*为必须填写内容

选择感兴趣领域